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Introduction

Neutrophils are leukocytes and are the first line of defence 
against infection, they act by migrating from the blood 
into tissue to engulf pathogens in response to inflamma-
tory stimuli. Neutrophils present a potent antimicrobial 
arsenal for the degradation of foreign material, including 
many degradative enzymes. In particular, human leuko-
cyte elastase (HLE, EC 3.4.21.37) is a neutrophil serine pro-
tease released from neutrophils in response to stimuli and 
mediators [1]. The unregulated activity of HLE, due to an 
imbalance between proteases and endogenous inhibitors 
(the predominant one being α

1
-antitrypsin), is implicated 

in the extracellular degradation of matrix proteins such as 
elastin and collagen and plays a key role in several inflam-
matory diseases, such as chronic obstructive pulmonary 

disease (COPD) and adult respiratory distress syndrome 
(ARDS) [2–5]. In particular, CODP, which involves pul-
monary emphysema and chronic bronchitis, is the fourth 
leading cause of death in the world [6]. Furthermore, HLE 
also activates other proteases (e.g. metalloproteinases) and 
upregulates inflammation [7,8]. Thus, selective inhibitors 
of HLE have the potential to reestablish the protease/anti-
protease balance, thereby providing a promising strategy 
for the treatment of COPD and other inflammatory disor-
ders [9–11]. While several low molecular weight synthetic 
inhibitors have been developed, toxicity and instability 
problems have disrupted their investigation [10–12].

We have recently reported that the 4-oxo-β-lactams 
(azetidine-2,4-diones) are useful design scaffolds for serine 
protease inhibitors [13]. The 4-oxo-β-lactams containing 
N-aryl or N-heteroarylthiomethyl groups were designed as 
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potential mechanism-based inhibitors featuring a latent 
electrophilic quinone methide imine function, that upon 
further reaction with an active site nucleophilic residue 
(e.g. His-57), may ultimately lead to irreversible inactiva-
tion of the enzyme [14]. Structure-activity relationship 
analysis showed that such 4-oxo-β-lactams afforded highly 
potent and selective inhibition of HLE, even at a very low 
inhibitor-to-enzyme ratio, as shown by the second-order 
rate constant for the inhibitor-enzyme association, k

on
, of 

3.2 × 106 M−1s−1 for derivative 1 (Figure 1).
Despite the excellent inhibitory potency displayed by 1 

and related derivatives, stability studies in both phosphate 
buffer and human plasma suggested that the departure 
of the thiol leaving group following 4-oxo-β-lactam ring-
opening does not occur in the HLE inhibition pathway 
[14]. Moreover, the highly hydrophobic nature of the 
4-oxo-β-lactams (e.g. 1, log P = 4.48 [15]) could well result 
in fast elimination from highly-perfused lungs and con-
sequently a limited in vivo efficacy. We therefore turned 
our attention to the more polar sulphone counterparts. 
Aryl sulphonylmethyl moieties have been successfully 
incorporated into the design of mechanism-based HLE 
inhibitors, examples of which are the 1,2-benzisothiazol-
3(2H)-one 1,1-dioxide [16] and 1,2,5-thiadiazolidin-3-one 
1,1-dioxide scaffolds [17–21]. For example, Groutas et al. 
suggested that the latter inactivates HLE via a mechanism 
involving the departure of the corresponding sulphinic 
acid to form an electrophilic imine, while the less potent 
sulphide counterpart leads to acylation of the enzyme 
without loss of the leaving group [18]. Moreover, we 
ourselves have unequivocally shown that β-lactam ring-
opening of 2 (Figure 1) following nucleophilic attack at 
the lactam carbonyl carbon atom leads to the departure 
of phenylsulphinic acid [22]. We thus envisaged that the 
4-oxo-β-lactam sulphone derivative, 3, could lead to the 
expulsion of phenylsulphinate subsequent to acylation 
of Ser-195 and form an electrophilic quinone methide 
imine function in a mechanism similar to that depicted in 
Scheme 1. Here we wish to report the synthesis of 3 and its 
in vitro inhibitory activity against human neutrophil ser-
ine proteases HLE, proteinase 3 and cathepsin G, and the 
cysteine protease papain. In addition, in anticipation of 
using this compound in rodent efficacy models, its stabil-
ity in PBS and human plasma, together with mouse blood 
and tissue (lung, spleen and liver) levels following intrap-
eritoneal administration of a single dose are reported.

Materials and Methods

General
Melting points were determined using a Kofler camera 
Bock Monoscope M (Frankfurt, Germany) and uncor-
rected. Infrared spectra were recorded using a Nicolet 
Impact 400 FTIR spectrophotometer (Nicolet Analytical 
Instruments, Madison, WI, USA). NMR spectra were 
recorded using a Brucker 400 Ultra-Shield (Brucker 
ARX 400 spectrometer, 400 MHz, Bruker Instruments, 
Billerica, MA, USA) spectrometer in CDCl

3
 solution; 

chemical shifts, δ, are expressed in ppm relative to 
tetramethylsilane as the internal standard, and the cou-
pling constants, J, are expressed in Hz. Low-resolution 
mass spectra were recorded using an HP5988A spectrom-
eter, by RIAIDT, University of Santiago de Compostela, 
Spain. Elemental analyses were performed by Medac, 
Brunel Science Centre, Egham, UK. Spectrophotometric 
assays were performed using a Shimadzu UV-2100 PC 
instrument (iMed.UL, Lisbon). TLC was performed 
using Merck grade silica gel 60 F

254
 aluminium plates. 

Preparative column chromatography was performed 
using silica gel 60 from Merck (70-230 mesh ASTM). 
Solvents and buffer materials for enzyme assays were 
of analytical reagent grade. Cathepsin G (EC.3.4.21.20), 
MeOSuc-Ala-A-Ala-Pro-Val-p-NA and Suc-Ala-Ala-Pro-
Phe-p-NA were purchased from Sigma (Portugal), while 
HLE (EC 3.4.21.37) and proteinase 3 (EC.3.4.21.76) were 
purchased from Calbiochem (Portugal).

3,3-Diethyl-1-[4-(phenylsulphonylmethyl)phenyl]azetidine-
2,4-dione (3)
A mixture of 3,3-diethyl-1-(4-tolyl)azetidine-2,4-dione 
(5, Scheme 1) [13] (0.346 mmol), N-bromosuccinimide 
(NBS) (0.346 mmol) and benzoyl peroxide (0.0346 mmol) 
in tetrachloromethane was heated under reflux for 12h, 
the reaction being monitored by TLC. Benzoic acid was 
removed by filtration and the solvent removed under 
reduced pressure to yield 1-(4-(bromomethyl)phenyl)-
3,3-diethylazetidine-2,4-dione, 6 [14]. Thioether 7 was 
prepared by adding triethylamine (2.2 mmol) to a solu-
tion of 6 (2 mmol) and thiophenol (2.2 mmol) in dry 
tetrahydrofuran (THF) (5 mL). The reaction was stirred at 
room temperature, being monitored by TLC, on comple-
tion the triethylamine hydrochloride was removed by 
filtration and the solvent removed under reduced pres-
sure [14]. 3,3-Diethyl-1-[4-(phenylsulphonylmethyl)
phenyl]azetidine-2,4-dione, 3, was prepared by slowly 
adding 3-chloroperbenzoic acid (MCPBA, 0.382 mmol) 
to a cold solution of the thioether 7 [14] (0.153 mmol, 
51.9 mg) in DCM (10 mL). The reaction mixture was 
warmed to room temperature and monitored by TLC. 
Upon completion of the reaction (ca. 40 min), the solvent 
was removed under reduced pressure, the crude prod-
uct was purified by column chromatography and then 
recrystallised from DCM-hexane to yield a white solid 
(47.4 mg, 83%), mp 143–145°C, ν

max
 (film) 1856, 1737, 

1315, 1153 cm−1; δ 1H-NMR 1.08 (6H, t, J = 7.6), 1.88 (4H, q,  
J =7.6), 4.32 (2H, s), 7.16 (2H, d, J = 8), 7.52 (2H, t, J = 8), 7.66 
(1H, t, J = 8), 7.71 (2H, dd, J = 8, 1.6), 7.79 (2H, d, J = 8); δ 13C-
NMR 9.24, 23.9, 62.3, 72.3, 119.1, 126.4, 128.6, 129.1, 131.8, 
134, 134.2, 137.8, 172; EI-MS 230.15 (M-SO

2
Ar)+ (22.19%), 

132.05 (C
7
H

6
NCO)+ (100%); Anal. calcd. for C

20
H

21
NO

4
S: C, 

64.67; H, 5.7; N, 3.77; S, 8.63; found C, 64.43; H, 5.94; N, 
3.56; S, 8.31.

Enzyme Kinetics
The rates of inhibition of HLE, cathepsin G and proteinase 
3 by 3 were determined by the progress curve method [14]. 
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The inhibition of the HLE was studied at 25°C by continu-
ously monitoring the absorbance at 410 nm for 20 min of 
a solution prepared by mixing 10 μL of HLE stock solu-
tion (2 μM in 0.05M acetate buffer, pH 5.5) with a solution 
containing 10 μL of 5 in DMSO, 20 μL of MeOSuc-Ala-Ala-
Pro-Val-p-NA (50 mM in DMSO) and 960 μL of 0.1M pH 7.2 
HEPES buffer. Control assays, in which the inhibitor was 
omitted, ran linearly. Inhibition of HLE was extremely rapid 
even at very low inhibitor concentrations (i.e. < 10[E]). In 
these experimental conditions, progress curves at different 
inhibitor concentrations were fitted to Equation 1, which 
accounted for the tight-binding nature of the inhibition 
[23].

A t
k

k t
s

i s

obs

obs= +
− − − −

−
n

n n g

g

g

g

( ) ( )









( ) 
( )







1
1n

1 exp

1






+ A0

�

(1)

where A is the absorbance at 410 nm (related to the con-
centration of 4-nitroaniline formed upon hydrolysis of 
the MeOSuc-Ala-Ala-Pro-Val-p-NA through an extinc-
tion coefficient of 8250 M−1 cm−1), A

0
 is the absorbance at 

time t = 0, v
i
 and v

s
 are the initial and final rates of product 

formation, k
obs

 is the pseudo-first-order rate constant for 
the approach to the steady-state and γ is defined by

g n n= / − /E I s i[ ] [ ]( ) ( ) 1
2

�
(2)

Similarly, inhibition of cathepsin G and proteinase 3 by 
3 was studied using respectively Suc-Ala-Ala-Pro-Phe-
p-NA and MeOSuc-Ala-Ala-Pro-Val-p-NA as substrates. 
Inhibition was observed at inhibitor concentrations > 
10[E] and thus, progress curves were fitted to Equation 3. 
The inhibitory activity of 3, towards papain (1mg/ml) was 
investigated by the incubation method, ([3] = 50 μM in the 
incubation mixture), using the described procedures [14].

A t k t k As i s obs obs= + − − − / +n n n( ) ( ) 1 exp 0
�

(3)

Stability studies
The hydrolysis of 4-oxo-β-lactam 3 was studied using an 
HPLC system comprising a Merck Hitachi L-7100 pump 
(Merck, Darmstadt, Germany), a Shimadzu SPD-6AV 
detector (Shimadzu Co., Japan), a manual sample injec-
tion module with a 20 µL loop, and a Merck LiChroCART® 
250-4 RP8 (5 µm) column. The mobile phase was 
acetonitrile/water (65:35) and the column effluent was 
monitored at 254 nm with a flow rate of 1 mL min−1. For 
the pH 7.4 hydrolysis, isotonic phosphate buffer solution 

(PBS), a 15 µL aliquot of a 10−2 M stock solution of the 
4-oxo-β-lactam 3 in acetonitrile was added to 2.5 mL of 
PBS at 37°C. At regular intervals, samples of the reaction 
mixture were analysed by HPLC.

Human plasma was obtained from the pooled, hepa-
rinised blood of healthy donors, was frozen and stored 
at −20°C prior to use. For the hydrolysis experiments, the 
compounds were incubated at 37°C in human plasma 
that had been diluted to 80% (v/v) with pH 7.4 PBS. At 
appropriate intervals, aliquots of 100 µL were added to 
200 µL of acetonitrile to both quench the reaction and 
precipitate the plasma proteins. These samples were cen-
trifuged and the supernatant analysed by HPLC for the 
presence of the initial compound.

Ex vivo studies
Male NMRI mice (20–22 g) were obtained from Charles 
River (Barcelona, Spain). The animals were kept under 
standard conditions and fed ad libitum. All of the 
experimental procedures were carried out with the 
permission of the local laboratory committee, and in 
accordance with internationally accepted principles. 
Each group of mice received a single 30 mg kg−1 dose of 
3 given by intraperitoneal (ip) injection and three mice 
were used per time point. At appropriate time intervals, 
blood was collected into heparinised tubes and stored 
at −30°C and the mice were euthanised. The lung, 
spleen and liver of the mice were removed and stored at 
−70°C. The mice which did not receive the administra-
tion of 3 were used as a control group. Determination of 
3 in mice blood and tissues was performed by HPLC as 
described below.

Chromatographic system.
The HPLC system consisted of a 32 Katarat Software 
(Beckman Instruments, Fullerton, CA, USA), a Midas 
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Figure 1.  Structures of elastase inhibitors 1-4.
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Scheme 1.  Synthesis of 4-oxo-β-lactam 5.
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Spark 1.1 autoinjector (Spark, Emmen, The Netherlands) 
and a Diode-Array 168 detector (Beckman Instruments). 
The detector wavelength was set to 280 nm. The analyti-
cal column was a LiChroCART® (250-4.6) Purospher® Star 
RP-8 (5µm) (Merck). The mobile phase consisted of 0.05M 
potassium dihydrogen phosphate and 0.05M sodium 
acetate (pH adjusted to 4 with acetic acid) - acetonitrile 
(53:47, v/v) employing a flow rate of 1 mL min−1 at 25°C, 
adapted from Gaspar et  al. [24]. The retention time of 3 
was approximately 5.2 min when analysing blood samples 
and 5 min when analysing organ samples.

Extraction of 3 from blood and tissues
The levels of compound 3 in blood and tissues were deter-
mined by HPLC after an extraction procedure according 
to Gaspar et al, [24]. Briefly, 500 µL of blood were mixed 
with 250 µL of the mobile phase described above and 
extracted twice with 1 mL of a DCM:isooctane mixture 
(2:3, v/v) under stirring (15 min), followed by cen-
trifugation at 1200 × g for 10 min using a GPR centrifuge 
(Beckman Instruments). Liver, lung and spleen tissues 
were thawed and aliquots of about 100 mg were weighed 
out for each sample, mixed with  500 µL of buffer and 
extracted twice with 2300 µL of the DCM: isooctane mix-
ture by mechanical shaking for 30 min at room tempera-
ture, followed by centrifugation at 1200 × g for 10 min. The 
organic extracts were pooled and evaporated to dryness 
under nitrogen. The residue was dissolved in 1500 µL of 
mobile phase, filtered and then injected into the HPLC 
system. To determine the efficiency of the extraction 
procedures, a known amount of 3 was added to blood, 
solid tissues were removed from the mice that had not 
received 3 and then submitted to the above-mentioned 
extraction protocol.

Results

Chemistry
The 4-Oxo-β-lactam 3 was synthesised according to 
Scheme 1, starting with 3,3-diethyl-N-(4-methyl)phenyl 
azetidine-2,4-dione 5 [13], which was converted into the 
bromomethyl derivative 6 using NBS [14]. Compound 6 
was then reacted with thiophenol in the presence of tri-
ethylamine to give the phenylthiomethyl derivative 7 [14]. 
Oxidation of 7 with m-chloroperbenzoic acid (MCPBA) 
gave 3 in an 83% yield.

Inhibition Kinetics
Compound 3 was found to be a very potent inhibitor of HLE 
and the progress curves for the enzyme catalysed hydroly-
sis of MeOSuc-Ala-Ala-Pro-Val-p-NA and these are shown 
in Figure 2. These data were analysed accordingly to slow-
tight binding inhibition kinetics by non-linear regression 

analysis, using Equation 1. The resulting k
obs

 values present 
a linear dependence with inhibitor concentration (Figure 
3A), consistent with the simple time-dependent inhibition 
via the slow association mechanism depicted in Scheme 2, 
]25] where k

obs
 has the relationship

k k I S K kobs on m off= / + / +[ ] [ ]( )1� (4)

Here k
on

 is the second-order rate constant for the for-
mation of the enzyme-inhibitor complex, EI, and k

off
 

is the first-order rate for the decomposition of EI. The 
magnitude of k

on
 is indicative of the inhibitory potency. 

The steady-state dissociation constant of the enzyme-
inhibitor complex, K

i
 was calculated using the steady-

state velocity, v
s
, together with v

0
, and fitting them by 

non-linear regression to Equation 5 [26], while k
off

 was 
calculated from Equation 6:

n
n

s
0

1 1
=

[ ] [ ]( ){ }I K S Ki m/ + / +
�

(5)

K K Ki off on= /

�
(6)

The plot of the steady-state rates, v
s
, versus [3] for the inhi-

bition of HLE is presented in Figure 3B. An extremely rapid 
HLE inactivation was observed at very low concentrations 
of the 4-oxo-β-lactam 3, giving k

on
 = (1.46 ± 0.07) × 106 

M−1s−1, K
i
 = (0.63 ± 0.09) nM, and k

off
 = 9.22 × 10−4 s−1 (Table 

1), indicating that 3 is a very efficient inhibitor.
The 4-oxo-β-lactam 3 also inhibited the human neu-

trophil serine proteases cathepsin G and proteinase-3, 
although with significantly lower activities compared 
with the HLE inhibition. The second order rate constant 
for cathepsin G inhibition was 41.4 M−1s−1, while that for 
proteinase-3 was 4.99 × 103 M−1s−1 (Table 1). However, 
compound 3 was found to be inactive against papain, a 
cysteine protease.

Stability studies in aqueous buffer and human plasma
The half-lives of 3 are (1.04 ± 0.25) h in PBS and (0.11 ± 0.03) 
h in 80% human plasma at 37°C (Table 1). For both 
plasma and PBS the product of hydrolysis was found to 
be 2-[4-(phenylsulphonylmethyl)phenylcarbamoyl]-2-
ethylbutanoic acid 8 (Scheme 3).

Ex vivo studies
Figure 4 show the mean total blood, spleen and lung 
concentration-time profiles after ip administration of a 
30 mg kg−1 dose of 3 to mice. Inhibitor 3 was not detected 
in mouse liver. From the concentration-time profile data 
presented in Figure 4, the following C

max
 values of 3 were 

determined: 1207 ± 440 μg/total blood, 179 ± 30 μg/g 
spleen and 106 ± 440 μg/g lung.

Table 1.  Summary of enzyme inhibition at 25°C and stability kinetic data at 37°C, for 4-oxo-β-lactam 3.
HLE Proteinase 3 Cathepsin G PBS pH 7.4 Human plasma

K
i
/ nM k

off
/ s−1 k

on
/M−1s−1 k

on
/M−1s−1 k

on
/M−1s−1 t

1/2
/h t

1/2
/h

0.63 ± 0.09 9.22 × 10−4 1.46 × 106 4.99 × 103 41.4 1.04 ± 0.25 0.11 ± 0.03
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Discussion

The 4-oxo-β-lactams are acylating agents that have been 
reported as selective and efficient inhibitors of HLE. 
The sulphone derivative 3 emerged as a very potent 
HLE inhibitor, with a k

on
 value of 1.46 × 106 M−1s−1, which 

is one order of magnitude higher than the second-
order rate constant for HLE inactivation by Merck’s 
cephalosporin sulphone 4, (Figure 1, k

on
 = 1.61 × 105 

M−1s−1) [27] and of the same order of magnitude as that 
of the monocyclic β-lactam HLE inhibitor L-694,458 
(3.78 × 106 M−1s−1) [28], which has been reported to be in  
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Figure 2.  Progress curves for the slow-binding inhibition of HLE by 
4-oxo-β-lactam 3. Reaction conditions: [HLE] = 20 nM, [MeOSuc-Ala-
Ala-Pro-Val-p-NA] = 1 mM, 0.1 M HEPES buffer, pH 7.2, 25 °C. [3]: (a) 
0; (b) 6.25; (c) 12.5; (d) 25; (e) 50; (f ) 100 nM.
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s
, versus 

[3] for the inhibition of HLE. The data were obtained from fits of the 
curves shown in Figure 2. The solid line was drawn using the best-fit 
parameters from a fit according to Equation 5.
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Scheme 2.  Kinetic model for acyl-enzyme inhibition of HLE by 4-oxo-
β-lactam 3 in the presence of substrate.
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Figure 4.  Mean ± sd pharmacokinetic profile in A) total mice blood, 
B) mice spleen and C) mice lung, after administration of a ip 30 mg/kg 
dosage of 4-oxo-β-lactam 3.
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Phase II clinical trials for cystic fibrosis, juvenile rheuma-
toid arthritis and emphysema [29].

The 4-oxo-β-lactam 3 inhibited all three neutrophil 
serine proteases tested, being particularly potent towards 
HLE, with a HLE/PR3/cathepsin G inhibition ratio of 
3.5 × 104/120/1. Since proteinase 3 and HLE are closely 
related proteases (57% homology [30], presenting similar 
preferences for molecular recognition at the S

1
 binding 

pocket, it is not surprising to observe inhibition of both 
these enzymes. However, poor inhibition of cathepsin G 
may be the result of reduced interactions at S

1
, due to a 

chymotrypsin and trypsin-like preference for accepting 
aromatic and positively charged side chains at P

1
 [30].

Interestingly, the sulphone derivative 3 was found 
to be a slightly more potent inhibitor of HLE than its 
sulphide precursor 7 and previously tested against this 
enzyme (k

on
 = 1.17 × 106 M−1s−1) [14]. In addition, while 

sulphide 7 was reported to be inactive against cathepsin 
G and a modest inhibitor of proteinase 3 (k

on
 = 122 M−1s−1) 

[14], its sulphone counterpart 3 inhibited both enzymes, 
giving k

on
 = 41.4 M−1s−1 and about 5 × 103 M−1s−1, respec-

tively. The significant increases in the rate of protei-
nase 3 acylation by nearly 40-fold may be a result of a 
better interaction of the phenylsulphonyl substituent 
rather than the corresponding sulphide in the polar S

1
’ 

environment of this enzyme. Indeed, the inhibition of 
these three neutrophil serine proteases by 3 may be an 
advantage for therapeutics, since all three enzymes are 
involved in inflammatory disorders. The fact that 3 did 
not inhibit the cystein protease papain is in good agree-
ment with similar findings obtained for 4-oxo-β-lactam 
derivatives inhibitors of HLE [14], suggesting a high 
degree of selectivity towards the serine proteases.

In the present study, compound 3 was found to be 
rapidly hydrolysed in both pH 7.4 phosphate buffer (PBS) 
and plasma, in line with the previously reported chemi-
cal stability of cephalosporin sulphones (e.g. half-lives of 
3 and 4 in PBS pH 7.4 are about 1 h) [31]. The half-life for 
the hydrolysis of 4-oxo-β-lactam 3 in human plasma is 
about 10 times lower than in PBS, indicating that 3 is very 
susceptible to hydrolysis catalysed by plasma enzymes, 
such as esterases. In both cases the product of hydroly-
sis was a result of 4-oxo-β-lactam ring opening, without 
departure of the phenylsulphinic acid.

The concentration-time profiles presented in Figure 4 
indicate that inhibitor 3 distributes into spleen and lungs, 
which are well-perfused organs. In contrast, compound 
3 was not detected in the liver, which suggests extensive 
metabolisation by liver enzymes. Figure 4A shows that the 
concentration of 3 in mice blood starts decreasing about 
2 minutes after ip administration of a 30 mg kg−1 dose, but 
with the inhibitor still being detected 60 min after admin-
istration. There was a more constant level of the 4-oxo-β-
lactam 3 in the spleen, with a second peak level at 10 min 
after injection (Figure 4B), which might result from an 
erratic pattern of the inhibitor’s concentration that is seen 
in this organ from animal to animal. The level of inhibitor 
in mice lung, the desired site of action, decreases sharply 

2 min after injection, being almost completely eliminated 
from this tissue within 5 min (Figure 4C). This result is 
consistent with either reaction of 3 with mice elastase or 
a rapid elimination. Overall, the results herein presented 
compare well with the reference β-lactam L-694,458, 
which was reported to have a half-life of 1.8 h in rat blood 
after a 5 mg kg−1 dose given iv, and to be degraded by a 
pathway believed to involve esterases [32].

Conclusions

The 4-oxo-β-lactam 3 was found be a potent tight-binding 
irreversible inhibitor of HLE. The presence of a phenylsul-
phonyl substituent increases the intrinsic chemical reactiv-
ity of the 4-oxo-β-lactam, when compared to its sulphide 
counterpart. Compound 3 poorly inhibited cathepsin G 
and moderately inhibited proteinase 3, in contrast to its 
sulphide analogue. Experimental results suggest that 3 is 
exceedingly reactive, being susceptible to off-target reac-
tions, particularly by plasma and liver enzymes. Structural 
modification could provide interesting derivatives retain-
ing the high inhibitory properties and with an enhanced 
hydrolytic stability as potential drug candidates.
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